My Smart Home Project


ABSTRACT

Smart home technology has proved to contribute to increased independence and safety. Smart Home Technology is a collective term for information and communication technology in homes, where the components are communicating through a local network. The technology may be used for monitoring, alarming and executing actions, according to the programmed criteria. These project includes a high level security system informs the authorized person and to the police station by a dedicated software using internet. The heart of the project is a Web Server running on an ARM Cortex M4 microcontroller. There are various sensors, devices connected to this device for security system, control and monitoring. Dedicated softwares are there for user (.Net and Android) and police station (.Net). The user software can control the devices in home, view various sensor readings, status of security system, change configuration etc. The application used in the police station use maps of local area to provide the intruder alert. The software used in police station will be communicating with this home server and if an intruder is detected, it will be shown in the software as a location in map and a notification message which makes their duty easily. Same time the house owner will be informed by the user software. The software communicates to the Smart Home Device using UDP protocol. The user software is compatible for future developments like camera interfaces. 

















 

  Demo Videos

 


 

 

 



 

 

More Details




...................................................................................................................................................................

Led Blinking using Experiment 12F629



Program

//////////////////////////////////////////////////////////////////////
void init_ports(void) {
TRISIO = 0;
}
//////////////////////////////////////////////////////////////////////
void main()
{
int x;
init_ports();
do{
GPIO.GP1=1;
Delay_ms(1000);

GPIO.GP1=0;
Delay_ms(1000);
//GPIO.GP1=1;
}while(1);

}
Code is written using MikroC



LCD based digital alarm clock using 89S51 microcontroller

 Circuit Diagram
An alarm clock is a clock that indicates a pre-set time by producing sound at that time. This functionality of digital clock is used to awaken people or remind them of something. A digital clock is one that displays time digitally. The project explained here, displays time on a 16x2 LCD module. The LCD is interfaced with 8051 microcontroller (AT89S51). This circuit can be used in cars, houses, offices etc.

This clock works in 12 hour mode and is configured by programming the microcontroller AT89S51. The program uses a delay function for producing a delay of 1 second.
The connections in the circuit are as following: port P2 of microcontroller is used as data input port which is connected to data pins (7-14) of LCD. P3^0, P3^1 and P3^6 pins of microcontroller are connected to control pins RS, RW and EN of LCD. P1^0, P1^1, P1^2 and P1^3 pins of microcontroller are connected to tactile switches to take manual inputs.

On reset, the LCD prompts the user to set alarm. Only the hour and minute components can be set by pressing the corresponding switches, repeatedly. These switches are made active low and so they provide ground to the corresponding input pins of the microcontroller AT89S51. The AM/PM mode is set by toggling the switch between ground and Vcc. Ground would set the clock in AM mode while Vcc would set it in PM mode.


After that the LCD prompts the user to set time. Only the hour and minute components can be set by pressing the corresponding switches, repeatedly. These switches are made active low and so they provide ground to the corresponding input pins of the controller. The AM/PM mode is set by toggling the switch between ground and Vcc. Ground would set the clock in AM mode while Vcc would set it in PM mode. The clock starts when start pin is connected to Vcc by pressing the switch.

The set time is displayed on LCD screen and changes as the time passes on. Seconds are increased after every one second by making use of delay function. As second reaches 59, minute is incremented by one and second is reset to 0. Similarly, as minute reaches 59, hour is increased by one and minute is set to 0. After hour reaches 11, minute reaches 59 and second reaches 59, all of them are set to 0 and the AM/PM mode is changed accordingly.

When the clock time becomes equal to the alarm time, a message ‘Alarm’ is displayed on LCD and alarm pin of microcontroller goes high for some duration. This pin can be connected to a speaker or buzzer to sound the alarm at the pre-set time.

PIC Microcontroller-Based Electronic Lock





 Circuit Diagram





Security is a prime concern in our day-today life. Everyone
wants to be as much secure as possible. An access control for doors forms a
vital link in a security chain. The microcontroller based digital lock for
Doors is an access control system that allows only authorized persons to access
a restricted area.


An electronic lock
or digital lock is a device which
has an electronic control assembly attached to it. They are provided with an
access control system. This system allows the user to
unlock the device with a password. The password is entered by making use of a
keypad. The user can also set his password to ensure better protection. The
major components include a Keypad, LCD and the controller PIC16F877A. This article describes the making of an electronic code lock using the
16F877A microcontroller.





The system is fully controlled by the 8 bit microcontroller 16F877A
which has a 8Kbytes of ROM for the program memory. The password is stored in
the EPROM so that we can change it at any time. The system has a Keypad by
which the password can be entered through it. When the entered password equals
with the password stored in the memory then the relay gets on and so that the
door is opened.





The code is built in a modular style to allow a user to find
ways to modify  project. In start the D
Lock programs loads with a default code of "2345" format is *2345#
which can be enter to unlock the door, the code cam be change by entering the
master code in the format *23455#new 4 digit code.  In this program i only display the result on
LCD and lock will be  placed at   PORTA
bit 0 where i put led for simulation. 











A 4x3 matrix keypad
and a 16x2 LCD have been
used here. Keypad and LCD are very commonly used input & output devices,
respectively. The password is stored in the system EEPROM.


While unlocking, if the entered
password from keypad matches with the stored password, then the lock opens and
a message is displayed on LCD. Also an output pin is made high to be used for
further purpose..





As
the program starts, wait for 5sec and press * string ‘Enter Password’ is
displayed on LCD. The keypad is scanned for pressed digits one by one. Every
time, row and column of the key pressed is detected and is displayed on LCD. After
the four digits are entered, the user should press # to Confirm Password and
again the input is taken through LCD. If the passwords do not match, a message
is displayed to indicate ‘Access Denied’ otherwise the ‘Access Granted’
message.




The default password is 2345 and master key to
change password is 23455., entry begins with * and stops with #.

PIC Countdown Timer (0-99)
















This project describes how to program PIC16F628A to function as a 00-99 min programmable timer. User can set any time between 00-99 minutes and can turn ON a device for that period. The device will be automatically turned OFF after the time expires. For demonstration, the ON/OFF condition of device is simulated by switching LED ON and OFF. With the use of three input switches (unit, ten, start/stop) the user can set ON time of the timer and can also control Start/Stop operation. The two time set switches are for selecting unit and tens digit of minute time interval (00-99). Once you set the value of minute interval, pressing the Start/Stop will turn the timer ON (LED will glow), and pressing the same button again at any point of time during timer operation will interrupt the process (LED will turn OFF) and the timer will be reset. LCD display will provide timer status and user interface for setting time.






Circuit




















Code
Compiled using MikroC for PIC




/*
  ############################################


  MCU:16F628A
  Project: PIC Countdown Timer (0-99)
  Vishal K M
  Jan 10, 2012
  ############################################

 
*/

// LCD module connections
sbit LCD_RS at RA0_bit;
sbit LCD_EN at RA1_bit;
sbit LCD_D4 at RB4_bit;
sbit LCD_D5 at RB5_bit;
sbit LCD_D6 at RB6_bit;
sbit LCD_D7 at RB7_bit;
sbit LCD_RS_Direction at TRISA0_bit;
sbit LCD_EN_Direction at TRISA1_bit;
sbit LCD_D4_Direction at TRISB4_bit;
sbit LCD_D5_Direction at TRISB5_bit;
sbit LCD_D6_Direction at TRISB6_bit;
sbit LCD_D7_Direction at TRISB7_bit;
// End LCD module connections

// Tact switches and Relay ports
sbit Relay at RA3_bit;
sbit SS_Select at RB0_bit;    // Start Stop Timer Select
sbit Unit_Button at RB1_bit;  // Set unit min
sbit Ten_Button at RB2_bit;   // Set ten min


// Messages
char Message1[]="Timer by VISHAL";
char Message2[]="Device ON";
char Message3[]="Device OFF";
char Message4[]="Set Time:    min";
char Message5[]="Time Left:   min";
unsigned short i, j, unit=0, ten=0, ON_OFF=0, index=0, clear, time;
char *digit = "00";
// 300ms Delay
void Delay_300(){
 Delay_ms(300);
}

void Display_Digits(){
 digit[1]=unit+48;
 digit[0]=ten+48;
 Lcd_Out(2,11,digit);
}

void start_timer(unsigned short MinVal){
 unsigned short temp1, temp2;
 Relay = 1;
 ON_OFF = 1;
 Lcd_Cmd(_LCD_CLEAR);
 Lcd_Out(1,1,Message2);
 Lcd_Out(2,1,Message5);
 OPTION_REG = 0x80 ;
 INTCON = 0x90;
 for (i=0; i<MinVal; i++){
  temp1 = (MinVal-i)%10 ;
  temp2 = (MinVal-i)/10 ;
  Lcd_Chr(2, 12, temp2+48);
  Lcd_Chr(2, 13, temp1+48);
  j=1;
  do {
  Delay_ms(1000);
  j++;
  } while(((j<=60) && (Clear ==0)));
  if (Clear) {
   Relay = 0;
   Delay_ms(500);
   Lcd_Out(1,1,Message3);
   INTCON = 0x00;
   goto stop;
   }
 }
 stop:
 Relay = 0;
 ON_OFF = 0;
 unit = 0;
 ten = 0;
 clear = 1;
}

void interrupt(void){
  if (INTCON.INTF == 1)   // Check if INTF flag is set
   {
    Clear = 1;
    INTCON.INTF = 0;       // Clear interrupt flag before exiting ISR
   }
  }

void main() {
  CMCON  |= 7;                       // Disable Comparators
  TRISB = 0b00001111;
  TRISA = 0b11110000;
  Relay = 0;

  Lcd_Init();                        // Initialize LCD
 start:
  clear = 0;
  Lcd_Cmd(_LCD_CLEAR);               // Clear display
  Lcd_Cmd(_LCD_CURSOR_OFF);          // Cursor off
  Lcd_Out(1,1,Message1);
  Lcd_Out(2,1,Message4);
  Display_Digits()  ;
 do {

     if(!Unit_Button){
     Delay_300();
     unit ++;
     if(unit==10) unit=0;
     Display_Digits();
    } // If !Unit_Button

    if(!Ten_Button){
     Delay_300();
     ten ++;
     if(ten==10) ten=0;
     Display_Digits();
    } // If !Ten_Button

    if(!SS_Select){
     Delay_300();
     time = ten*10+unit ;
     if(time > 0) start_timer(time);
    } // If !SS_Select

    if(clear){
     goto start;
    }
   } while(1);
}








Facebook page 

PIC 4 Bit LCD Interfacing Tutorial

The mikroC PRO for PIC provides a library for communication with Lcds (with HD44780 compliant controllers) through the 4-bit interface. An example of Lcd connections is given on the schematic at the bottom of this page.

For LCD Basics: Character LCD Basics  

External dependencies of Lcd Library














The following variables must be defined in all projects using Lcd Library :
Description :
Example :
extern sfr sbit LCD_RS:
Register Select line.
sbit LCD_RS at RB4_bit;
extern sfr sbit LCD_EN:
Enable line.
sbit LCD_EN at RB5_bit;
extern sfr sbit LCD_D7;
Data 7 line.
sbit LCD_D7 at RB3_bit;
extern sfr sbit LCD_D6;
Data 6 line.
sbit LCD_D6 at RB2_bit;
extern sfr sbit LCD_D5;
Data 5 line.
sbit LCD_D5 at RB1_bit;
extern sfr sbit LCD_D4;
Data 4 line.
sbit LCD_D4 at RB0_bit;
extern sfr sbit LCD_RS_Direction;
Register Select direction pin.
sbit LCD_RS_Direction at TRISB4_bit;
extern sfr sbit LCD_EN_Direction;
Enable direction pin.
sbit LCD_EN_Direction at TRISB5_bit;
extern sfr sbit LCD_D7_Direction;
Data 7 direction pin.
sbit LCD_D7_Direction at TRISB3_bit;
extern sfr sbit LCD_D6_Direction;
Data 6 direction pin.
sbit LCD_D6_Direction at TRISB2_bit;
extern sfr sbit LCD_D5_Direction;
Data 5 direction pin.
sbit LCD_D5_Direction at TRISB1_bit;
extern sfr sbit LCD_D4_Direction;
Data 4 direction pin.
sbit LCD_D4_Direction at TRISB0_bit;
Library Routines
  • Lcd_Init

  • Lcd_Out

  • Lcd_Out_Cp

  • Lcd_Chr

  • Lcd_Chr_Cp

  • Lcd_Cmd
Lcd_Init






Prototype
void Lcd_Init();
Returns
Nothing.
Description
Initializes Lcd module.
Requires
Global variables:
  • LCD_D7: Data bit 7

  • LCD_D6: Data bit 6

  • LCD_D5: Data bit 5

  • LCD_D4: Data bit 4

  • LCD_RS: Register Select (data/instruction) signal pin

  • LCD_EN: Enable signal pin

  • LCD_D7_Direction: Direction of the Data 7 pin

  • LCD_D6_Direction: Direction of the Data 6 pin

  • LCD_D5_Direction: Direction of the Data 5 pin

  • LCD_D4_Direction: Direction of the Data 4 pin

  • LCD_RS_Direction: Direction of the Register Select pin

  • LCD_EN_Direction: Direction of the Enable signal pin
must be defined before using this function.
Example
// Lcd pinout settings
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D7 at RB3_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D4 at RB0_bit;

// Pin direction
sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D7_Direction at TRISB3_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D4_Direction at TRISB0_bit;
...

Lcd_Init();
Lcd_Out






Prototype
void Lcd_Out(char row, char column, char *text);
Returns
Nothing.
Description
Prints text on Lcd starting from specified position. Both string variables and literals can be passed as a text.
Parameters :
  • row: starting position row number

  • column: starting position column number

  • text: text to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write text "Hello!" on Lcd starting from row 1, column 3:
Lcd_Out(1, 3, "Hello!");
Lcd_Out_Cp






Prototype
void Lcd_Out_Cp(char *text);
Returns
Nothing.
Description
Prints text on Lcd at current cursor position. Both string variables and literals can be passed as a text.
Parameters :
  • text: text to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write text "Here!" at current cursor position:
Lcd_Out_Cp("Here!");
Lcd_Chr






Prototype
void Lcd_Chr(char row, char column, char out_char);
Returns
Nothing.
Description
Prints character on Lcd at specified position. Both variables and literals can be passed as a character.
Parameters :
  • row: writing position row number

  • column: writing position column number

  • out_char: character to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write character "i" at row 2, column 3:
Lcd_Chr(2, 3, 'i');
Lcd_Chr_Cp






Prototype
void Lcd_Chr_Cp(char out_char);
Returns
Nothing.
Description
Prints character on Lcd at current cursor position. Both variables and literals can be passed as a character.
Parameters :
  • out_char: character to be written
Requires
The Lcd module needs to be initialized. See Lcd_Init routine.
Example
// Write character "e" at current cursor position:
Lcd_Chr_Cp('e');
Lcd_Cmd






Prototype
void Lcd_Cmd(char out_char);
Returns
Nothing.
Description
Sends command to Lcd.
Parameters :
  • out_char: command to be sent
  Note : Predefined constants can be passed to the function, see Available Lcd Commands.
Requires
The Lcd module needs to be initialized. See Lcd_Init table.
Example
// Clear Lcd display:
Lcd_Cmd(_LCD_CLEAR);
Available Lcd Commands


















Lcd Command
Purpose
_LCD_FIRST_ROW
Move cursor to the 1st row
_LCD_SECOND_ROW
Move cursor to the 2nd row
_LCD_THIRD_ROW
Move cursor to the 3rd row
_LCD_FOURTH_ROW
Move cursor to the 4th row
_LCD_CLEAR
Clear display
_LCD_RETURN_HOME
Return cursor to home position, returns a shifted display to its original position. Display data RAM is unaffected.
_LCD_CURSOR_OFF
Turn off cursor
_LCD_UNDERLINE_ON
Underline cursor on
_LCD_BLINK_CURSOR_ON
Blink cursor on
_LCD_MOVE_CURSOR_LEFT
Move cursor left without changing display data RAM
_LCD_MOVE_CURSOR_RIGHT
Move cursor right without changing display data RAM
_LCD_TURN_ON
Turn Lcd display on
_LCD_TURN_OFF
Turn Lcd display off
_LCD_SHIFT_LEFT
Shift display left without changing display data RAM
_LCD_SHIFT_RIGHT
Shift display right without changing display data RAM
Code
// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections

char txt1[] = "Embedded";   
char txt2[] = "Projects";
char txt3[] = "Lcd 4 bit";
char txt4[] = "Example";

char i;                              // Loop variable

void Move_Delay() {                  // Function used for text moving
  Delay_ms(500);                     // You can change the moving speed here
}

void main(){
 

  Lcd_Init();                        // Initialize LCD

  Lcd_Cmd(_LCD_CLEAR);               // Clear display
  Lcd_Cmd(_LCD_CURSOR_OFF);          // Cursor off
  Lcd_Out(1,6,txt3);                 // Write text in first row

  Lcd_Out(2,6,txt4);                 // Write text in second row
  Delay_ms(2000);
  Lcd_Cmd(_LCD_CLEAR);               // Clear display

  Lcd_Out(1,1,txt1);                 // Write text in first row
  Lcd_Out(2,5,txt2);                 // Write text in second row

  Delay_ms(2000);

  // Moving text
  for(i=0; i<4; i++) {               // Move text to the right 4 times
    Lcd_Cmd(_LCD_SHIFT_RIGHT);
    Move_Delay();
  }

  while(1) {                         // Endless loop
    for(i=0; i<8; i++) {             // Move text to the left 7 times
      Lcd_Cmd(_LCD_SHIFT_LEFT);
      Move_Delay();
    }

    for(i=0; i<8; i++) {             // Move text to the right 7 times
      Lcd_Cmd(_LCD_SHIFT_RIGHT);
      Move_Delay();
    }
  }
}

 
Copyright Electronics Projects And Details All Rights Reserved
ProSense theme created by Dosh Dosh and The Wrong Advices.
Blogerized by Alat Recording Studio Rekaman.